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Abstract. Using the method of Zengt al, we discuss various problems with the relationship
between a hydrogen atom and a harmonic oscillator of arbitrary dimensions, which include the
laws of coordinate transformation, the transformations between the angular momenta, energies,
radial functions, etc.

1. Introduction

Some research has been carried out on the relationship between a hydrogen atom and
a harmonic oscillator of arbitrary dimensions. However, there are still many problems
which need further study. For example, Davtyan and others [1-3] studied the coordinate
transformation. Their method is to use a ‘definition’ to generalize to arbitrary dimension the
relations satisfied for the so-callgdS transformation [4—-6]. They give no general proof

for this extension. There are also some considerations in their works, which include the
following meanings: the same function simultaneously represents the energy eigenstates of
the two quantum systems; different energy levels of the hydrogen atom (or the harmonic
oscillator) correspond to one energy level of the harmonic oscillator (or the hydrogen atom);
etc. These considerations have no general significance, and raise some new questions.
Bergmann and others [7, 8] studied the relationship between the radial functions. Their
method is to make a formal comparison for the radial functions; they do not discuss whether
the dimension, energy, angular momentum, etc, relations that they used are consistent with
those derived from the coordinate transformation. Clearly, one needs a new method to study
and solve these problems overall.

Recently [9], we used the coordinates of a hydrogen atom and the creation and
annihilation operators of a harmonic oscillator to construct two sets of operators: they all
form the SU (1, 1) algebra, thus connecting the two quantum systems with each other. The
two quantum systems are all of arbitrary dimension. Using this method, we established a
simpler relationship between the two quantum systems, in which the energies and the energy
eigenstates all have a one-to-one correspondence. Our method is basedSan(ih#)
algebra, and is therefore algebraic. It is very simple and effective. We believe that it may
be used to solve all the problems of the transformation of the two quantum systems.

The relation between the energy eigenstates of the hydrogen atom and the harmonic
oscillator given in [9] is in abstract form and is not expressed in coordinate space; moreover,
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it is only a part of all the problems which need solutions. In this paper, we will develop
our method and apply it to give an overall discussion of the various problems on the
transformation between the two quantum systems.

Let us now recall the method presented in [9]. We first construct the operators

K= ;(xAy +x)

Ko=i(2 1y 2 @)
2= 2 XJa.Xj

K3=—3(xA; —x)

wherex; (i =1,2,...,d) are the coordinates of&dimensional hydrogen atom,= . /x;x;
and A, = 8%/9x;9x; . They were proved to form th8U (1, 1) algebra, i.e. they satisfy

[K1, K2] = —iK3 [K2, K3] =Ky [K3, K1] = iK>. (2

We next construct the operators

1 D
Ki=7 ;Ka;)z +a?
i D
Ky = ~2 ;[(al)z —a?] (3)

1 D
K3 = Z_ ;(alaa + aaal)

Whereal anda, (@ = 1, 2,..., D) are respectively the creation and annihilation operators of
a D-dimensional harmonic oscillator. They were also proved to formSiti€l, 1) algebra.
Introducing the coordinates, of the D-dimensional harmonic oscillator and expressifig
anda, in terms ofu, andd/du,

1 0 1 0
CRi1 Car) B 1 ot @

then equation (3) may be reduced to

K1= (A, +u?)

i 0
! (D + 2u, aua) (5)

K3 = 3(—A, +u)

whereu = Juqly, A, = 0%/du,0u,. The two sets of operators (1) and (5) form the
SU(1, 1) algebra; thus, theU (1, 1) algebra connects the two quantum systems, namely
the d-dimensional hydrogen atom and tli&-dimensional harmonic oscillator, with each
other.

Noted that in this paper the variablesandu, are assumed to be dimensionless.

The paper is organized as follows. In section 2, we derive the relation between
the dimensions of the spaces of the two quantum systems and prove that the coordinate
transformation between the two quantum systems forms a traceless Clifford algebra; no
‘definition’ or ‘assumption’ is used there. In section 3, we derive the relation between the
angular momenta of the two quantum systems; There the concrete form of the coordinate
transformation is not required, but rather only the relations that the coordinate transformation

K, =
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should satisfy are used. In sections 4 and 5, we recall the relations between the energies
and the energy eigenstates of the two quantum systems, and re-express them in coordinate
space; then we use the angular momentum relation to derive the transformation between

the radical functions. In all the results, the fact that the energies and the angular momenta

of the two quantum systems have a one-to-one correspondence is demonstrated.

2. Transformation between coordinates

Since the two sets of operators (1) and (5) form $li&(1, 1) algebra, identifying them with
each other, we may establish the operator equations

XAy +x = 3(A, +ud) (6)

d—1 0 1 0

— i— = - [ D+ 2u, 7
2 e 0x; 4< e 8ua) 0

XA, —x = %(Au — uz). (8)

These equations are the theoretical fundamentals of this paper; of these, equations (6) and (8)
may be associated with

X = %‘I,{Z (9)

XA, = ZA,. (10)

NI

We now use the operator equations to derive the relations that the coordinate
transformation between th&dimensional hydrogen atom and tiedimensional harmonic
oscillator should satisfy. First, one notes that according tox(9ust be a homogeneous
form of u, with degree two: in other words, one should set

X = C;ﬂuauﬁ. (11)

The coefficienti‘;ﬂ in (11) may be considered to be the elements of some matrix hey
clearly satisfyC;, = Cj,, i.e. theC' are symmetric matrices.
Acting on (11) by the operator equation (7), one obtains:

Theorem 1There is the following relation between the dimensions of the spaces of the
d-dimensional hydrogen atom and tiedimensional harmonic oscillator:

D =2d-1). (12)
The proof is straightforward, provided one notes that
0x; d . )
X Bxi = Xj ua@(cl’wuloug) =2C) upus = 2x;.

Theorem 1 shows that the dimension of the space of Bkdimensional harmonic
oscillator connected by th&-dimensional hydrogen atom must be an even number.
Acting on (11) by the operator equation (10), one obtains:

Theorem 2The matricesC’,which associate the coordinates of the two quantum systems
with each other, are those such that its traces are null:

ci, =o. (13)
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The proof is also straightforward, because equation (13) is shown easily from
0= A, (Clyuaup).

We have shown that equation (9) means thamust takes the form (11). Further
analysis for (9) and (11) results in:

Theorem 3 There are the following relations between the matri€és

C'c/+CIcC =318 (14)
where! is a unit matrix. Equation (14) means that #ié form the Clifford algebra.
Proof. Differentiatingx = %uz with respect tax; and using (11) one may obtain

viug =0 (15)
where
i - i ou
v, = 2u 2COlﬂu,g - Bxa (16)
There are two possibilities in (15): ), = 0, (ii) v/, # 0, v' Lu. We will prove
v, = 0.

Thev' are the vectors in the space of thedimensional harmonic oscillator, therefore,
they may be expanded in terms@f. The expansion may be written as
vl = Zu_zfo’;ﬁuﬂ. a7)
Substituting equation (17) in (15), one can easily see that the coeffiqf(%ts (17) satisfy
op = —Jfpor 1-€. the f1 = (f3,) must be anti-symmetric matrices.
Differentiating (11) with respect ta;, then expressingu,/dx; in terms of v} and
expandingvy in terms ofu,, one obtains

Qu2(C'CT = C' f)gpuqug = 8. (18)
Settingi = j, equation (18) becomes
Qu=2(CICT — CT fopuqup =1 (does not sum o). (19)
From equation (19) one successively obtains
C'Ccl—C'fl =131 (does not sum o) (20)
C'—3cH =1l (21)

The f' are anti-symmetric, but the left-hand side of (21) is symmetric, therefore, one must
have f* = 0. This shows that! = 0 and

Oy

0Xx; = 2u72CLﬂu/3. (22)

Since f! = 0, one finds that the square of the mat6ik is proportional to the unit
matrix I:

c'cl =11 (does not sum on). (23)
We now seti # j. In this case, equation (18) becomes
(C'CY)gpuqup =0
which means thatC'C/),s = —(C'C/)p,. Noting thatC,, = Cj,, one finds that the
matricesC’ andC/ anti-commute with each other:
cic/+cict=0. (24)
The association of (23) with (24) gives theorem 3, i.e. relation (14).
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Theorems 1-3 give all the relations that the general coordinate transformation should
satisfy. It is because the general coordinate transformation forms the Clifford algebra,
therefore, that its concrete form may be obtained from the representation theory of the
Clifford algebra [10, 11].

Note that equation (14) is not the same as that defined by other authors; therefore, the
concrete form of the coordinate transformation in our work is not the same as that given by
other authors (there is a difference of 2 in the constant time).

3. Transformation between angular momenta

We have used the operator equations (6)—(10) to determine the laws of the coordinate
transformation. Conversely, when the coordinate transformation is given, one could also
derive the operator equations (6)—(10).

As an example, we derive equation (10). From equations (9) and (22), one successively
has

ad dug 0 : d
I = Zusz(’xﬁua
0x; 0x; Jugy dug
d ; ad
x— = Cogtg —
8)6,‘ auﬂ

0 () _ i, 9
x—x— )= Uy — | uy,— .
ax; U 0x; ap= po dug ?u,

The last of the above expressions may be reduced to
82

d 5 d o
i — Ay =-uy— +C C! . . 25
Fiow T 4" gu, T CarCotB G S (23)
Differentiatingx; andx with respect tau,, and using (9) and (11), one may show that
CéyC;auaupua = tu’u,. (26)
The two sides of (26) include the variables. Differentiating (26) three times, one obtains
CL.Cl, +CL.CL +Cl.CL, = i8608pr + 808w + 8p08ra]- (27)
Using equations (27) and (7), equation (25) may then be reduced to
XPAy = JuPA, + X (28)
where the operatok is
2—d 9 P a1 32
X = —TMQM + {_CpUCOéﬁ - Capcﬂ(r + 25(,/)5;30} Mpuam. (29)
The operatorX has a feature, i.e. its action an gives the result O:
X.Xj = 0 (30)

This result may be generalized to an arbitrary functiétc): X (x) = 0, providedx; in
®(x) may be expressed in terms @f in the form (11), in other words, provided(x)
may be reduced to the function of, i.e. one hasb(x) = ¥'(u). Our operator equations
always act on the function relatiob(x) = W'(u). In studying the action of the operator
equation (28), one always may s€t= 0. In this case, equation (28) is reduced to

XA, = A, (31)
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From the coordinate transformation, one may indeed derive the operator equation (10).
We now study the relation between the angular momenta of the two quantum systems.
Our conclusion is as follows:

Theorem 4Let /2 and L2 respectively denote the squares of the angular momentum
operators of the/-dimensional hydrogen atom and tiledimensional harmonic oscillator,
and ! and L respectively denote the angular momenta (quantum numbers) ofi-the
dimensional hydrogen atom and th@-dimensional harmonic oscillator. There are the
following relations between these operators and quantum numbers:

L? = 42 (32)
L=2l. (33)

Proof. We have used the coordinate transformation to derive (10). This operator equation
provides us a simpler method to study the relation betw®andi2. We make the spherical
surfaceS, and S, in the spaces of the two quantum systems respectively, and define the
functionsY (x) andY’(u) on S, and S, respectively. The radius of the spherical surfaces
arex’ andu’ respectively and’ = %u’z. Y’(u) comes from the transformation of(x),
thus one ha¥ (z) = Y'(u).

In spherical coordinateg\, and A, have the forms

®? d-1d 2
- + - =
dx2 x dx  x2
® D-1d [?
du? u du  wu?
Acting on the function relatiory () = Y’(u) by the operator equation (10) and noting that
x'= %u’z, then one immediately finds that equation (32) holds.
According to angular momentum theory in high-dimensional space [12], the eigenvalues
of /2 and L.2 arel(l+d —2) andL(L + D — 2), respectively. NotingD = 2(d — 1), one
can see from (32) that (33) holds.

A, =
(34)

Ay, =

According to (32),/2 and L? have common eigenfunctions. In other words, the
eigenfunction of L2 (i2) may be obtained from the transformation of the eigenfunction
of 2 (L?). We respectively use&;(6,_,64_1,...,60) and Y. (¢p_2, ¢p_1, ..., ¢0) tO
denote the eigenfunctions @t and L2, here6,_», 64_1, ..., 60 and ¢p_2, ¢p_1, ..,

o are respectively the angular coordinates of #hdimensional hydrogen atom and the
D-dimensional harmonic oscillator. Thus one has

Y1(64-2,04-1,...,60) = MY (¢p-2, ¢p-1, .-, ¥0) (35)
where M’ is a normalization constant, its introduction being due to the reason that
Y;04-2,64_1,...,00) and Y, (¢p_2, ¢p_1, ..., o) Will be normalized in different spaces.
Y1(64-2,04-1,...,00) and Y. (¢p_2,¥p_1,...,90) should be expressed in terms of the

spherical harmonics in high-dimensional spaces, which may be found in [12]. In [13],
we established a one-to-one correspondence between the spherical harmonics of a three-
dimensional hydrogen atom and a four-dimensional harmonic oscillator, and solved all the
problems of the transformation between these two quantum systems. One may generalize
the method in [13] to study the relation between the spherical harmonicg-diraensional
hydrogen atom and B-dimensional harmonic oscillator, although the work is complicated.

We do not discuss this problem in detail here.
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4. Transformation between energy eigenfunctions

In [9] we have given the transformations between the energies and the energy eigenstates
of the two quantum systems: they are

2
ep = _Eiz (36)
N
|d,n) = e X% | D N) (37)

where e, and |d,n) are respectively the energy and the energy eigenstate ofl/the
dimensional hydrogen atonky and |D, N) are respectively the energy and the energy
eigenstate of théd-dimensional harmonic oscillator, am is the function defined by

1-—2e, . 1+ 2e,
coshy, = ¢ sinhg, = — + e . (38)

—8e, v/ —8e,

The energieg, (n =1,2,3,...)andEy (N =0,1,2,...) are
1 4

R (in units of M_Z) (39)

2[n + 5(d —3)? h

D . . _

Ey =N+ > (in units of hw). (40)

Substituting equations (39) and (40) in (36) and noting= 2(d — 1), one obtains
N =2(n-1). (41)

Equation (41) shows the relation between the energy levels of the two quantum systems.
They are always in one-to-one correspondence. Moreover, the energy levels of the harmonic
oscillator associated with the hydrogen atom are always even.

The energies of the two quantum systems are generally degenerate. For exaBmple,
and |d, n) should generally still include angular momentum quantum numbers. However,
because the energy levels and the angular momenta of the two quantum systems are always
in one-to-one correspondence, relation (37) always holds in any case.

We now transform (37) into coordinate space. I&}, (x) denote the common
eigenfunctions of the Hamiltonian and the operdfoof the d-dimensional hydrogen atom,
and ¥, y..(u) the common eigenfunctions of the Hamiltonian and the operé\%omf the
D-dimensional harmonic oscillator. It is clear that in coordinate space, equation (37) may
be transformed into the form

By ni(x) = Me KW, ) (u). (42)

Becaused, ,;(x) and ¥, v . (u) will be normalized in different coordinate spaces, we
have introduced a normalization constathere. The operatoK, in (42) must take the
differential forms (1) or (5). A simple calculation shows th&t may also be reduced to

fd—1 d (D 1 d

The operatorK, does not include angular coordinates, therefore, it commutes/with
and L2, i.e. it satisfies K2, /%] = [K2, L?] = 0. Because of this fact, whed, ,,(z) is
the eigenfunction of? (so it may be labelled by the angular momenti)grthen Wy y.o(uw)
must be the eigenfunction df? (so it may be labelled by the angular momentiin
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5. Transformation between radial functions

We now use spherical coordinates to write the eigenfunctions on both sides of (42), i.e. we
set

Dy (@) = Ty ni(x)Y1(0a-2,04-1, - .., 60) (44)

Vpn.L(w) = Rpn@)YL(9p-2, ¢p-1, - -, ¢0) (45)
where bothT, , ;(x) andRp .. (1) are radial functions. Noting that e&pi K»6,) commutes
with Y, (¢p_2, ¥p_1, ..., o) and using (35), one can obtain

Tyni(x) = M"e X Rpy 1 (u) (46)

which is simply the relation between the radial functions of the two quantum systems, where
M" is a normalization constant and satisfids= M'M".

The radial functiongy ,, ;(x) and Rp y. 1 (u) are well known (one may find their forms
from [8]):

Tyni(y) = Cdnl)e™ 2y L2515 2(y) (47)
C(dnl) = xg“Pln+ 3(d — 3] V2T — D] [2T(n +1 +d — 2)] 2 (48)
Rpn.L(u) = C(DNL)e"2ub L% u?) (49)
C(DNL) = uy""? [2r (N;L + 1)}% [r (NJFEH))} (50)

wherexq = h?/2me?, ug = /i/mw, y = 2x/n', n’ = n + 3(d — 3), and L& (2) is the
Laguerre polynomial.

Using the expressions fdf, , ;(x) and Rp v . (#), one may check the correctness of
relation (46) and determine the normalization constdrit

M" = xg%ud*n + 1 - 3] (51)

In checking relation (46), one needs to expand the exponent functions on the right-hand
side of (46) as series and use

e—iKZH,, _ ezD@,,ez 6,ud/du (52)
(@ N+
LW@) = Z( 1 ( k) i (53)
1
(ud> u® =a'u® (54)
du
a 1 ’ 1

In this way, the right-hand side of (46) would be changed to the same form as its left-hand
side. All the calculations are in fact simpler.
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6. Conclusion

We have discussed all the problems on the transformation between a hydrogen atom and
a harmonic oscillator of arbitrary dimensions. Our notion and method are not the same as
that used by other authors, but are very strict. The results are all correct and clear up many
problems that appeared in the previous work cited herein.
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