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Abstract. Using the method of Zenget al, we discuss various problems with the relationship
between a hydrogen atom and a harmonic oscillator of arbitrary dimensions, which include the
laws of coordinate transformation, the transformations between the angular momenta, energies,
radial functions, etc.

1. Introduction

Some research has been carried out on the relationship between a hydrogen atom and
a harmonic oscillator of arbitrary dimensions. However, there are still many problems
which need further study. For example, Davtyan and others [1–3] studied the coordinate
transformation. Their method is to use a ‘definition’ to generalize to arbitrary dimension the
relations satisfied for the so-calledKS transformation [4–6]. They give no general proof
for this extension. There are also some considerations in their works, which include the
following meanings: the same function simultaneously represents the energy eigenstates of
the two quantum systems; different energy levels of the hydrogen atom (or the harmonic
oscillator) correspond to one energy level of the harmonic oscillator (or the hydrogen atom);
etc. These considerations have no general significance, and raise some new questions.
Bergmann and others [7, 8] studied the relationship between the radial functions. Their
method is to make a formal comparison for the radial functions; they do not discuss whether
the dimension, energy, angular momentum, etc, relations that they used are consistent with
those derived from the coordinate transformation. Clearly, one needs a new method to study
and solve these problems overall.

Recently [9], we used the coordinates of a hydrogen atom and the creation and
annihilation operators of a harmonic oscillator to construct two sets of operators: they all
form theSU(1, 1) algebra, thus connecting the two quantum systems with each other. The
two quantum systems are all of arbitrary dimension. Using this method, we established a
simpler relationship between the two quantum systems, in which the energies and the energy
eigenstates all have a one-to-one correspondence. Our method is based on theSU(1, 1)
algebra, and is therefore algebraic. It is very simple and effective. We believe that it may
be used to solve all the problems of the transformation of the two quantum systems.

The relation between the energy eigenstates of the hydrogen atom and the harmonic
oscillator given in [9] is in abstract form and is not expressed in coordinate space; moreover,
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it is only a part of all the problems which need solutions. In this paper, we will develop
our method and apply it to give an overall discussion of the various problems on the
transformation between the two quantum systems.

Let us now recall the method presented in [9]. We first construct the operators

K1 = 1
2(x1x + x)

K2 = i

(
d − 1

2
+ xj ∂

∂xj

)
K3 = − 1

2(x1x − x)

(1)

wherexi (i = 1, 2, . . . , d) are the coordinates of ad-dimensional hydrogen atom,x = √xixi
and1x = ∂2/∂xi∂xi . They were proved to form theSU(1, 1) algebra, i.e. they satisfy

[K1,K2] = −iK3 [K2,K3] = iK1 [K3,K1] = iK2. (2)

We next construct the operators

K1 = 1

4

D∑
α=1

[(a†α)
2+ a2

α]

K2 = − i

4

D∑
α=1

[(a†α)
2− a2

α]

K3 = 1

4

D∑
α=1

(a†αaα + aαa†α)

(3)

wherea†α andaα (α = 1, 2, . . . , D) are respectively the creation and annihilation operators of
aD-dimensional harmonic oscillator. They were also proved to form theSU(1, 1) algebra.
Introducing the coordinatesuα of theD-dimensional harmonic oscillator and expressinga†α
andaα in terms ofuα and∂/∂uα

aα = 1√
2

(
uα + ∂

∂uα

)
a†α =

1√
2

(
uα − ∂

∂uα

)
(4)

then equation (3) may be reduced to

K1 = 1
4(1u + u2)

K2 = i

4

(
D + 2uα

∂

∂uα

)
K3 = 1

4(−1u + u2)

(5)

whereu = √uαuα, 1u = ∂2/∂uα∂uα. The two sets of operators (1) and (5) form the
SU(1, 1) algebra; thus, theSU(1, 1) algebra connects the two quantum systems, namely
the d-dimensional hydrogen atom and theD-dimensional harmonic oscillator, with each
other.

Noted that in this paper the variablesxi anduα are assumed to be dimensionless.
The paper is organized as follows. In section 2, we derive the relation between

the dimensions of the spaces of the two quantum systems and prove that the coordinate
transformation between the two quantum systems forms a traceless Clifford algebra; no
‘definition’ or ‘assumption’ is used there. In section 3, we derive the relation between the
angular momenta of the two quantum systems; There the concrete form of the coordinate
transformation is not required, but rather only the relations that the coordinate transformation
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should satisfy are used. In sections 4 and 5, we recall the relations between the energies
and the energy eigenstates of the two quantum systems, and re-express them in coordinate
space; then we use the angular momentum relation to derive the transformation between
the radical functions. In all the results, the fact that the energies and the angular momenta
of the two quantum systems have a one-to-one correspondence is demonstrated.

2. Transformation between coordinates

Since the two sets of operators (1) and (5) form theSU(1, 1) algebra, identifying them with
each other, we may establish the operator equations

x1x + x = 1
2(1u + u2) (6)

d − 1

2
+ xi ∂

∂xi
= 1

4

(
D + 2uα

∂

∂uα

)
(7)

x1x − x = 1
2(1u − u2). (8)

These equations are the theoretical fundamentals of this paper; of these, equations (6) and (8)
may be associated with

x = 1
2u

2 (9)

x1x = 1
21u. (10)

We now use the operator equations to derive the relations that the coordinate
transformation between thed-dimensional hydrogen atom and theD-dimensional harmonic
oscillator should satisfy. First, one notes that according to (9)xi must be a homogeneous
form of uα with degree two: in other words, one should set

xi = Ciαβuαuβ. (11)

The coefficientsCiαβ in (11) may be considered to be the elements of some matrixCi . They
clearly satisfyCiαβ = Ciβα, i.e. theCi are symmetric matrices.

Acting on (11) by the operator equation (7), one obtains:

Theorem 1.There is the following relation between the dimensions of the spaces of the
d-dimensional hydrogen atom and theD-dimensional harmonic oscillator:

D = 2(d − 1). (12)

The proof is straightforward, provided one notes that

xi
∂xj

∂xi
= xj uα

∂

∂uα
(Cjρσuρuσ ) = 2Cjρσuρuσ = 2xj .

Theorem 1 shows that the dimension of the space of theD-dimensional harmonic
oscillator connected by thed-dimensional hydrogen atom must be an even number.

Acting on (11) by the operator equation (10), one obtains:

Theorem 2.The matricesCi ,which associate the coordinates of the two quantum systems
with each other, are those such that its traces are null:

Ciαα = 0. (13)
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The proof is also straightforward, because equation (13) is shown easily from

0= 1u(C
i
αβuαuβ).

We have shown that equation (9) means thatxi must takes the form (11). Further
analysis for (9) and (11) results in:

Theorem 3.There are the following relations between the matricesCi :

CiCj + CjCi = 1
2Iδij (14)

whereI is a unit matrix. Equation (14) means that theCi form the Clifford algebra.

Proof. Differentiatingx = 1
2u

2 with respect toxi and using (11) one may obtain

viαuα = 0 (15)

where

viα = 2u−2Ciαβuβ −
∂uα

∂xi
. (16)

There are two possibilities in (15): (i)viα = 0, (ii) viα 6= 0, vi⊥u. We will prove
viα = 0.

Thevi are the vectors in the space of theD-dimensional harmonic oscillator, therefore,
they may be expanded in terms ofuα. The expansion may be written as

viα = 2u−2f iαβuβ. (17)

Substituting equation (17) in (15), one can easily see that the coefficientsf iαβ in (17) satisfy
f iαβ = −f iβα, i.e. thef i = (f iβα) must be anti-symmetric matrices.

Differentiating (11) with respect toxj , then expressing∂uα/∂xj in terms of vjα and
expandingvjα in terms ofuα, one obtains

4u−2(CiCj − Cif j )αβuαuβ = δij . (18)

Settingi = j , equation (18) becomes

4u−2(CiCi − Cif i)αβuαuβ = 1 (does not sum oni). (19)

From equation (19) one successively obtains

CiCi − Cif i = 1
4I (does not sum oni) (20)

Ci − 1
4(C

i)−1 = f i. (21)

Thef i are anti-symmetric, but the left-hand side of (21) is symmetric, therefore, one must
havef i = 0. This shows thatviα = 0 and

∂uα

∂xi
= 2u−2Ciαβuβ. (22)

Sincef i = 0, one finds that the square of the matrixCi is proportional to the unit
matrix I :

CiCi = 1
4I (does not sum oni). (23)

We now seti 6= j . In this case, equation (18) becomes

(CiCj )αβuαuβ = 0

which means that(CiCj )αβ = −(CiCj )βα. Noting thatCiαβ = Ciβα, one finds that the
matricesCi andCj anti-commute with each other:

CiCj + CjCi = 0. (24)

The association of (23) with (24) gives theorem 3, i.e. relation (14).
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Theorems 1–3 give all the relations that the general coordinate transformation should
satisfy. It is because the general coordinate transformation forms the Clifford algebra,
therefore, that its concrete form may be obtained from the representation theory of the
Clifford algebra [10, 11].

Note that equation (14) is not the same as that defined by other authors; therefore, the
concrete form of the coordinate transformation in our work is not the same as that given by
other authors (there is a difference of 2 in the constant time).

3. Transformation between angular momenta

We have used the operator equations (6)–(10) to determine the laws of the coordinate
transformation. Conversely, when the coordinate transformation is given, one could also
derive the operator equations (6)–(10).

As an example, we derive equation (10). From equations (9) and (22), one successively
has

∂

∂xi
= ∂uα

∂xi

∂

∂uα
= 2u−2Ciαβuα

∂

∂uβ

x
∂

∂xi
= Ciαβuα

∂

∂uβ

x
∂

∂xi

(
x
∂

∂xi

)
= CiαβCiρσ uα

∂

∂uβ

(
uρ

∂

∂uσ

)
.

The last of the above expressions may be reduced to

xi
∂

∂xi
+ x21x = d

4
uα

∂

∂uα
+ CiαβCiρσ uβuσ

∂2

∂uα∂uρ
. (25)

Differentiatingxi andx with respect touα, and using (9) and (11), one may show that

Ciαγ C
i
ρσ uαuρuσ = 1

4u
2ur . (26)

The two sides of (26) include the variablesuα. Differentiating (26) three times, one obtains

CiωrC
i
σρ + CiσrCiωρ + CiρrCiωσ = 1

4[δσωδρr + δσrδρω + δρσ δrω]. (27)

Using equations (27) and (7), equation (25) may then be reduced to

x21x = 1
4u

21u +X (28)

where the operatorX is

X = −2− d
4

uα
∂

∂uα
+
{
−CiρσCiαβ − CiαρCiβσ +

1

2
δαρδβσ

}
uρuσ

∂2

∂uα∂uβ
. (29)

The operatorX has a feature, i.e. its action onxj gives the result 0:

Xxj = 0. (30)

This result may be generalized to an arbitrary function8(x): X8(x) = 0, providedxi in
8(x) may be expressed in terms ofuα in the form (11), in other words, provided8(x)
may be reduced to the function ofuα, i.e. one has8(x) = 9 ′(u). Our operator equations
always act on the function relation8(x) = 9 ′(u). In studying the action of the operator
equation (28), one always may setX = 0. In this case, equation (28) is reduced to

x1x = 1
21u. (31)
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From the coordinate transformation, one may indeed derive the operator equation (10).
We now study the relation between the angular momenta of the two quantum systems.

Our conclusion is as follows:

Theorem 4.Let l̂2 and L̂2 respectively denote the squares of the angular momentum
operators of thed-dimensional hydrogen atom and theD-dimensional harmonic oscillator,
and l and L respectively denote the angular momenta (quantum numbers) of thed-
dimensional hydrogen atom and theD-dimensional harmonic oscillator. There are the
following relations between these operators and quantum numbers:

L̂2 = 4l̂2 (32)

L = 2l. (33)

Proof. We have used the coordinate transformation to derive (10). This operator equation
provides us a simpler method to study the relation betweenl̂2 andL̂2. We make the spherical
surfaceSx and Su in the spaces of the two quantum systems respectively, and define the
functionsY (x) andY ′(u) on Sx andSu respectively. The radius of the spherical surfaces
are x ′ andu′ respectively andx ′ = 1

2u
′2. Y ′(u) comes from the transformation ofY (x),

thus one hasY (x) = Y ′(u).
In spherical coordinates,1x and1u have the forms

1x = d2

dx2
+ d − 1

x

d

dx
− l̂2

x2

1u = d2

du2
+ D − 1

u

d

du
− L̂

2

u2
.

(34)

Acting on the function relationY (x) = Y ′(u) by the operator equation (10) and noting that
x ′ = 1

2u
′2, then one immediately finds that equation (32) holds.

According to angular momentum theory in high-dimensional space [12], the eigenvalues
of l̂2 and L̂2 are l(l + d − 2) andL(L+D − 2), respectively. NotingD = 2(d − 1), one
can see from (32) that (33) holds.

According to (32), l̂2 and L̂2 have common eigenfunctions. In other words, the
eigenfunction ofL̂2 (l̂2) may be obtained from the transformation of the eigenfunction
of l̂2 (L̂2). We respectively useYl(θd−2, θd−1, . . . , θ0) and YL(ϕD−2, ϕD−1, . . . , ϕ0) to
denote the eigenfunctions ofl̂2 and L̂2; here θd−2, θd−1, . . . , θ0 and ϕD−2, ϕD−1, . . . ,
ϕ0 are respectively the angular coordinates of thed-dimensional hydrogen atom and the
D-dimensional harmonic oscillator. Thus one has

Yl(θd−2, θd−1, . . . , θ0) = M ′YL(ϕD−2, ϕD−1, . . . , ϕ0) (35)

where M ′ is a normalization constant, its introduction being due to the reason that
Yl(θd−2, θd−1, . . . , θ0) andYL(ϕD−2, ϕD−1, . . . , ϕ0) will be normalized in different spaces.
Yl(θd−2, θd−1, . . . , θ0) and YL(ϕD−2, ϕD−1, . . . , ϕ0) should be expressed in terms of the
spherical harmonics in high-dimensional spaces, which may be found in [12]. In [13],
we established a one-to-one correspondence between the spherical harmonics of a three-
dimensional hydrogen atom and a four-dimensional harmonic oscillator, and solved all the
problems of the transformation between these two quantum systems. One may generalize
the method in [13] to study the relation between the spherical harmonics of ad-dimensional
hydrogen atom and aD-dimensional harmonic oscillator, although the work is complicated.
We do not discuss this problem in detail here.
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4. Transformation between energy eigenfunctions

In [9] we have given the transformations between the energies and the energy eigenstates
of the two quantum systems: they are

en = − 2

E2
N

(36)

|d, n〉 = e−iK2θn |D,N〉 (37)

where en and |d, n〉 are respectively the energy and the energy eigenstate of thed-
dimensional hydrogen atom,EN and |D,N〉 are respectively the energy and the energy
eigenstate of theD-dimensional harmonic oscillator, andθn is the function defined by

coshθn = 1− 2en√−8en
sinhθn = −1+ 2en√−8en

. (38)

The energiesen (n = 1, 2, 3, . . .) andEN (N = 0, 1, 2, . . .) are

en = − 1

2[n+ 1
2(d − 3)]2

(
in units of

µe4

h̄2

)
(39)

EN = N + D
2

(in units of h̄ω). (40)

Substituting equations (39) and (40) in (36) and notingD = 2(d − 1), one obtains

N = 2(n− 1). (41)

Equation (41) shows the relation between the energy levels of the two quantum systems.
They are always in one-to-one correspondence. Moreover, the energy levels of the harmonic
oscillator associated with the hydrogen atom are always even.

The energies of the two quantum systems are generally degenerate. For example,|D,N〉
and |d, n〉 should generally still include angular momentum quantum numbers. However,
because the energy levels and the angular momenta of the two quantum systems are always
in one-to-one correspondence, relation (37) always holds in any case.

We now transform (37) into coordinate space. Let8d,n,l(x) denote the common
eigenfunctions of the Hamiltonian and the operatorl̂2 of thed-dimensional hydrogen atom,
and9D,N,L(u) the common eigenfunctions of the Hamiltonian and the operatorL̂2 of the
D-dimensional harmonic oscillator. It is clear that in coordinate space, equation (37) may
be transformed into the form

8d,n,l(x) = Me−iK2θn9D,N,L(u). (42)

Because8d,n,l(x) and9D,N,L(u) will be normalized in different coordinate spaces, we
have introduced a normalization constantM here. The operatorK2 in (42) must take the
differential forms (1) or (5). A simple calculation shows thatK2 may also be reduced to

K2 = i

(
d − 1

2
+ x d

dx

)
= i

(
D

4
+ 1

2
u

d

du

)
. (43)

The operatorK2 does not include angular coordinates, therefore, it commutes withl̂2

and L̂2, i.e. it satisfies [K2, l̂
2] = [K2, L̂

2] = 0. Because of this fact, when8d,n,l(x) is
the eigenfunction of̂l2 (so it may be labelled by the angular momentuml), then9D,N,L(u)
must be the eigenfunction of̂L2 (so it may be labelled by the angular momentumL).
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5. Transformation between radial functions

We now use spherical coordinates to write the eigenfunctions on both sides of (42), i.e. we
set

8d,n,l(x) = Td,n,l(x)Yl(θd−2, θd−1, . . . , θ0) (44)

9D,N,L(u) = RD,N,L(u)YL(ϕD−2, ϕD−1, . . . , ϕ0) (45)

where bothTd,n,l(x) andRD,N,L(u) are radial functions. Noting that exp(−iK2θn) commutes
with YL(ϕD−2, ϕD−1, . . . , ϕ0) and using (35), one can obtain

Td,n,l(x) = M ′′e−iK2θnRD,N,L(u) (46)

which is simply the relation between the radial functions of the two quantum systems, where
M ′′ is a normalization constant and satisfiesM = M ′M ′′.

The radial functionsTd,n,l(x) andRD,N,L(u) are well known (one may find their forms
from [8]):

Td,n,l(y) = C(dnl)e−y/2ylL2l+d−2
n−l−1 (y) (47)

C(dnl) = x−d/20 [n+ 1
2(d − 3)]−(d+1)/2[0(n− l)] 1

2 [20(n+ l + d − 2)]−
1
2 (48)

RD,N,L(u) = C(DNL)e−u2/2uLL
(L+D/2−1)
(N−L)/2 (u2) (49)

C(DNL) = u−D/20

[
20

(
N − L

2
+ 1

)] 1
2
[
0

(
N + L+D

2

)]− 1
2

(50)

wherex0 = h̄2/2me2, u0 =
√
h̄/mω, y = 2x/n′, n′ = n + 1

2(d − 3), andL(α)m (z) is the
Laguerre polynomial.

Using the expressions forTd,n,l(x) andRD,N,L(u), one may check the correctness of
relation (46) and determine the normalization constantM ′′:

M ′′ = x−d/20 u
D/2
0 [n+ 1

2(d − 3)]−1. (51)

In checking relation (46), one needs to expand the exponent functions on the right-hand
side of (46) as series and use

e−iK2θn = e
1
4Dθne

1
2θnud/du (52)

L(α)n (z) =
n∑
k=0

(−1)k
(
n+ α
n− k

)
zk

k!
(53)

(
u

d

du

)l
ua = alua (54)

eθn = 1

n′
n′ = n+ 1

2(d − 3). (55)

In this way, the right-hand side of (46) would be changed to the same form as its left-hand
side. All the calculations are in fact simpler.
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6. Conclusion

We have discussed all the problems on the transformation between a hydrogen atom and
a harmonic oscillator of arbitrary dimensions. Our notion and method are not the same as
that used by other authors, but are very strict. The results are all correct and clear up many
problems that appeared in the previous work cited herein.
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